第七百一十四章 拓扑-《发个微信去地府》


    第(2/3)页

    地球上的时区两两之间是相连的,东八区之后是东九区,再之后是东十区,依此类推——但有一个例外:国际日期变更线。它两边差开了一天。

    能不能设计出一种不需要国际日期变更线的时区体系?答案是不能,分得再细再繁琐也不行。这是拓扑学中博苏克-乌拉姆定理在一维情况下的推论,该定理是乌拉姆提出的,由博苏克在1933年证明。

    实际上这个定理本身的表述是“任意给定一个从n维球面到n维空间的连续函数,总能在球面上找到两个与球心相对称的点,他们的函数值是相同的。”当令n=1的时候,就变成了赤道和时间的对应。

    这个定理还有一个推论是,在地球上总存在对称的两点,它们的温度和大气压的值正好都相同。

    定理4:握住一个装满咖啡的咖啡杯,在不松手也不洒咖啡的前提下,必须让咖啡杯旋转两圈才能让你的手、胳膊和咖啡杯回到原状】

    (请勿用热咖啡尝试本实验。)

    方法:伸出手向前反手握住咖啡杯,然后逐渐向胸前旋转,从腋下穿过,这是第一圈。此时咖啡杯转完了一圈,但胳膊已经扭曲成了奇怪的形状。这时将胳膊抬高,从头顶再转过第二圈,才能让一切复原。

    手残党瞩目:你们用空杯子就好,以免灌自己一脖子水。

    实际上你的手和咖啡杯的旋转在拓扑学中称为旋转群so(3);完全回到原状就等于在so(3)里画出了一个环。拓扑学中,so(3)的基本群是“Z/2”——这意味着,你要让咖啡杯复原两次,才能让你的整个胳膊复原一次。

    【定理5:把一张当地的地图平铺在地上,则总能在地图上找到一点,这个点下面的地上的点正好就是它在地图上所表示的位置】

    也就是说,如果在商场的地板上画了一张整个商场的地图,那么你总能在地图上精确地作一个“你在这里”的标记。

    1912年,荷兰数学家布劳威尔证明了这么一个定理:假设d是某个圆盘中的点集,f是一个从d到它自身的连续函数,则一定有一个点x,使得f(x)=x。换句话说,让一个圆盘里的所有点做连续的运动,则总有一个点可以正好回到运动之前的位置。这个定理叫做布劳威尔不动点定理(Brouerfixedpointtheorem)。

    除了上面的“地图定理”,布劳威尔不动点定理还有很多其他奇妙的推论。如果取两张大小相同的纸,把其中一张纸揉成一团之后放在另一张纸上,根据布劳威尔不动点定理,纸团上一定存在一点,它正好位于下面那张纸的同一个点的正上方。

    这个定理也可以扩展到三维空间中去:当你搅拌完咖啡后,一定能在咖啡中找到一个点,它在搅拌前后的位置相同(虽然这个点在搅拌过程中可能到过别的地方)。

    还有耳机线……

    为什么耳机线总是绕成团?——没错!都怪拓扑学!!
    第(2/3)页